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We examine polymers in the presence of an applied asymmetric sawtooth �ratchet� potential which is
periodically switched on and off, using molecular dynamics �MD� simulations with an explicit Lennard-Jones
solvent. We show that the distribution of the center of mass for a polymer in a ratchet is relatively wide for
potential well depths U0 on the order of several kBT. The application of the ratchet potential also deforms the
polymer chains. With increasing U0 the Flory exponent varies from that for a free three-dimensional �3D�
chain, �=3 /5 �U0=0�, to that corresponding to a 2D compressed �pancake-shaped� polymer with a value of
�=3 /4 for moderate U0. This has the added effect of decreasing a polymer’s diffusion coefficient from its 3D
value D3D to that of a pancaked-shaped polymer moving parallel to its minor axis D2D. The result is that a
polymer then has a time-dependent diffusion coefficient D�t� during the ratchet off time. We further show that
this suggests a different method to operate a ratchet, where the off time of the ratchet, toff, is defined in terms
of the relaxation time of the polymer, �R. We also derive a modified version of the Bader ratchet model �Bader
et al., Proc. Natl. Acad. Sci. U.S.A. 96, 13165 �1999�� which accounts for this deformation and we present a
simple expression to describe the time dependent diffusion coefficient D�t�. Using this model we then illustrate
that polymer deformation can be used to modulate polymer migration in a ratchet potential.
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I. INTRODUCTION

The environment in which biological macromolecules are
found is a tempestuous one. The constant bombardment �i.e.,
Brownian motion� experienced by entities at the molecular
scale �nanometers� is the source of diffusion and is directly
related to molecular transport. It is a seemingly impossible
task to generate deterministic motion against the forces to
which a molecule is subject at these length scales �with typi-
cal energies on the order of kBT�. Borrowing an analogy from
Bier, directed motion at the molecular level is akin to hu-
mans attempting to swim in molasses �2�. In spite of this,
molecular processes work almost unimaginably well.

A key element of this success is a molecular toolkit which
has evolved to inherently use diffusion in transport processes
as opposed to it being a detriment. This is counterintuitive as
diffusion is sometimes the bane of directed transport, often
as a result of myopic attempts to scale down macroscopic
manipulation techniques, for example for use in microfluidic
applications. Instead, diffusion plays an enormously impor-
tant role in transport and we are only now beginning to fully
appreciate and take advantage of its consequences �3–8�.

The crucial question is then: How does a system �e.g., a
piece of cellular machinery� extract useful work from the
random fluctuations affecting a diffusing molecule? The sec-
ond law of thermodynamics strictly forbids a periodic system
at thermal equilibrium from performing any work. Therefore,
in order to extract work the general modus operandi is to

drive the system out of thermal equilibrium and to break its
spatial inversion symmetry, although other operational
modes are possible �4�. These techniques are referred to as
ratcheting effects and the mechanism itself as a ratchet. The
classic illustrative example of this phenomenon is the
Feynman-Smoluchowski ratchet, consisting of a ratchet and
pawl system at thermal equilibrium; no directed motion is
then possible �9–11�. The variant of this system in which the
ratchet and pawl are thermally isolated from one another at
different temperatures �broken thermal equilibrium� is able
to perform useful work. The review of Reimann �4� gives the
detailed historical development of ratchets.

In this paper we focus on the use of broken spatial inver-
sion symmetry, manifested by the application of an asym-
metric spatially periodic potential, to generate directed trans-
port. Numerous analogs of this method exist in biological
systems, including the pumping mechanism in ion channels
�7� and the movement of myosin along an actin filament �7�.
These ratchets operate in one of two modes: a flashing mode
�in which the ratchet is periodically switched on and off�
�4–6,12�, or a tilted mode in which an external force is ap-
plied in addition to the periodic switching of the ratchet
�2,4�. We restrict our work to a discussion of flashing ratch-
ets.

Within the rapidly growing fields of micro- and nanoflu-
idics, methods that can effectively �and efficiently� manipu-
late material in environments where Brownian motion has
non-negligible effects are increasingly important �7�. Ratch-
ets �in their various forms� are one set of techniques which
are at the forefront of this technological revolution �7�. A
particular application, the manipulation of unfolded biologi-
cal macromolecules �DNA for example�, whether it be for
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separation purposes or purely transport methodologies, is the
intrinsic motivation for our work.

In this paper we carry out a systematic examination of the
behavior of polymers in �flashing� asymmetric sawtooth
�ratchet� potentials using molecular dynamics simulations in
which we explicitly include solvent particles and thus a self-
consistent representation of hydrodynamics. We restrict our
examination to regimes where the width of the ratchet is on
the order of the polymer radius of gyration, Rg.

We provide an examination of the role of polymer defor-
mation induced by the application of the ratchet. This defor-
mation alters the equilibrium steady state friction coefficient
of the molecules, �, and consequently the diffusion coeffi-
cient D, both of which are functions of the effective size and
shape of the molecules. This deformation most certainly af-
fects ratchet operation; however, it has not been included in
current ratchet models. Downton et al. �5� and Craig et al.
�6� have examined a number of aspects of polymer dynamics
in ratchets using Brownian dynamics simulations �with no
hydrodynamics�, and in particular they have examined the
role of the internal degrees of freedom of the polymer chains
in the transport of polymers in ratchets and the effects of
mechanical coupling of objects in ratchets. An explicit sol-
vent allows us to directly examine the effects of deformation
�for hydrodynamically impermeable coils� and associated ef-
fects on polymer dynamics in ratchets resulting from hydro-
dynamic interactions.

II. SIMULATION MODEL

We use a similar molecular dynamics �MD� model as de-
scribed previously �13,14� and found in numerous other pub-
lications �15�. The model is a variant of the classic Kremer-
Grest model for coarse-grained polymer systems. We have
two constituent components in the system. The first are soft
fluid particles, which interact solely via the repulsive part of
the Lennard-Jones �LJ� potential given by

VLJ�r� = �4����

r
�12

− ��

r
�6	 + � , r � rc,

0, r � rc,

 �1�

where � and � are the length and energy scales, r is the
center-to-center distance between two beads, and rc=�62� is
the position of the minimum in the Lennard-Jones potential
and corresponds to the cutoff for calculating forces �15�.

The second component in our systems consists of poly-
mers constructed via a series of contiguous LJ particles
which are effectively bonded together using the finitely ex-
tensible nonlinear elastic �FENE� potential �15�

Vbond�r� = −
	

2
R0

2 ln�1 − � r

R0
�2	 , �2�

where R0 is the upper bound on the bond distance and 	 is an
effective spring constant. The linear polymers are modeled as
Np Lennard-Jones beads connected via Np−1 FENE bonds.
The use of the FENE potential ensures that the chains have a
finite range of extensions. We use the standard values 	
=30.0� /�2 and R0=1.5� �15,16�. The temperature in all of
the simulations is chosen to be kBT=1.

Our simulations can have on the order of 104�Ns�105

solvent particles. The reduced density of the system is set at
a value of 
=0.85�−3 �13,15�. The viscosity of the solvent
�as calculated previously� is �=2.25�0.05 and the corre-
sponding single-bead friction coefficient is �s=16.2�0.2
�13� in MD units.

The equations of motion for the system are written in
reduced units and integration is carried out using the stan-
dard velocity Verlet algorithm �15,17� with an integration
time step of 
t=0.01. More thorough descriptions of the en-
tire MD simulation method can be found throughout the lit-
erature �15,17�.

In order to control to the temperature in our systems we
use a dissipative particle dynamics �DPD� thermostat. The
crux of the DPD method involves damping differences in
particle pair velocities. The DPD thermostat has been shown
to preserve hydrodynamic interactions and is becoming the
method of choice for many practitioners of MD �18�. De-
tailed descriptions of the DPD method and its derivation
abound in the literature �19�. The time step we use in our
simulations provides robust thermostatting and we checked
that our results presented here are effectively invariant to
small changes in 
t.

A. Ratchet potential

We use an asymmetric sawtooth potential for our ratchet
�see Fig. 1�, which is given by the following piecewise con-
tinuous function:

UR�x��
kBT

= U0 � �
�LR − x�

�LR
, 0 � x� � �LR,

�LR + x�

�1 − ��LR
, �LR � x� � LR,
 �3�

where LR is the ratchet unit cell width and x�=xmodLR is the
position inside the potential. The parameter � is the effective
asymmetry parameter of the ratchet ��=0.5 implies a sym-
metric potential�. The depth of the well is U0 and is kept in
the range U0� �0,10� which corresponds to the normal op-

U0

(1-α)L

Rg
z

Rg
y Rg

x

y

x

z

αL
R

R

FIG. 1. �Color online� Schematic illustration of a polymer con-
fined within an asymmetric sawtooth potential with an asymmetry
parameter 0.5���1. The length of the ratchet unit cell is LR. The
polymer is compressed in the x direction as a result of the applica-
tion of the ratchet potential of depth U0.
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erational range for experimental ratchet systems �1,5�. Figure
1 shows a schematic depiction of a polymer confined in this
ratchet potential. The polymer is shown in a compressed
pancake-shaped state and the effective dimensions of the
chain are shown �discussed later�.

The ratchet potential is operated in a binary mode and
thus it is either on or off. The corresponding on and off times
are ton and toff, respectively. Values of ton=0 and toff=0 pro-
vide purely off and purely on states of the ratchet. Variations
in �, U0, ton, and toff alter the dynamics and conformations of
particles and molecules in the presence of the ratchet and can
induce net transport �4�.

III. POLYMER DEFORMATION IN ASYMMETRIC
SAWTOOTH POTENTIALS

In this section we examine the effects of confining poly-
mer chains within the asymmetric sawtooth potential de-
scribed by Eq. �3� and Fig. 1. The application of this poten-
tial has a number of consequences, most notably the
deformation of the polymer chain. The degree to which the
chains are deformed �relative to free chains� is dictated by U0
and �. Larger U0 yields larger deformation. In the limit of
U0→� we obtain two-dimensional �2D� pancake-shaped
polymers in the y-z plane and the chain Flory exponent is
�2D=3 /4 �20,21�. Conversely, in the absence of the potential
�i.e., U0=0� the Flory exponent is �3D=3 /5 �20,21�. Both
�3D and �2D are strictly valid in the large-chain limit �i.e., as
Np→��. In practice, both the potential and resulting defor-
mation are finite with �� ��2D ,�3D�. Larger U0 also leads to
sharper localization of the chains.

The asymmetry parameter of the potential, �, determines
the relative position in the ratchet at which polymers local-
ize. Defining 
c.m.�x� as the normalized probability distribu-
tion of the polymer center of mass, the parameter � controls
whether 
c.m.�x� is symmetric ��=0.5� or asymmetric �0.5
���1�. The combined variation of � and U0 thus modu-
lates the position of the maximum in 
c.m.�x� and its sharp-
ness and symmetry.

We use several metrics to gauge the effects of � and U0
on the polymer chains. The first is the averaged squared end-
to-end distance:

�Re
2
 � ��r�1 − r�Np

�2
 �4�

where �r�1−r�Np
� is the norm of the vector connecting the two

terminal monomers of the chain and �¯
 denotes a temporal
average. For U0=0 the end-to-end distance is predicted to
scale as Re�Np

�3D, for large Np �20�.
The other metrics of chain deformation are obtained from

the gyration tensor given by

R2 = �R11
2 R12

2 R13
2

R21
2 R22

2 R23
2

R31
2 R32

2 R33
2 � . �5�

The elements of this tensor are

Rij
2 �

1

Np
�
k=1

Np

�xi,k − xi,c.m.��xj,k − xj,c.m.� , �6�

where xi,k and xi,c.m. are the position of the kth monomer and
the center of mass, respectively �direction i=1,2 ,3 implies
x ,y ,z�. The trace of R2 is the squared radius of gyration:

Rg
2 � TrR2 = R11

2 + R22
2 + R33

2 . �7�

Equation �7� is equivalent to the standard expression for the
radius of gyration,

Rg
2 �� 1

Np
�
i=1

Np

�r�i − r�c.m.�2� , �8�

where r�i−r�c.m. is the vector connecting the ith monomer and
the molecule’s center of mass r�c.m., which is defined by

r�c.m. =
1

Np
�
i=1

Np

r�i. �9�

The radius of gyration Rg gives a measure of effective poly-
mer size and unlike Re it is equally useful for circular and
branched polymers. For U0=0, the radius of gyration also
scales as Rg�Np

�3D �Np�1� �20�.
Although Rg and Re do give a measure of effective poly-

mer size there is a caveat: neither Rg nor Re yields informa-
tion about the instantaneous conformational anisotropy �or
shape� of the molecules. The molecules’ relative anisotropy
is characterized using their principal radii of gyration. They
are the solutions of the characteristic equation det�R2−�I�
=0 for the eigenvalues, �=Rx�

2 ,Ry�
2 ,Rz�

2 �such that Rx�
2

�Ry�
2

�Rz�
2 � �20�. The three principal radii of gyration are given by

the average of these eigenvalues, Rg
�= �R�

2
1/2 ��=x� ,y� ,z��.
They give us an indicator of the anisotropy �and deforma-
tion� of the molecules. In the U0→� limit, the minor axis is
aligned in the x direction and the two major axes are in the
y-z plane.

We used these metrics to determine the size and aniso-
tropy of molecules in our MD simulations resulting from the
application of the ratchet potentials We do not explicitly ex-
plore the orientations of the associated eigenvectors of the
molecules here. The simulation cell used for these calcula-
tions has dimensions Lx�Ly �Lz �L�=46.449� or roughly
44 LJ beads wide�. The width of the ratchet is LR=11.612�,
with four potential wells per simulation cell. Systems are
initially allowed to relax for a minimum of 100 000 time
steps. The potential is then turned on and the system is al-
lowed to relax for an additional 100 000 MD time steps fol-
lowed by data collection for 2�107 MD time steps.

A. MD results for deformation (nonflashing potential)

We begin by examining the chain metrics described above
for Np� �3,41� and for potentials purely in the on state with
well depths of U0=0 ,2 ,4 ,8. For the U0=0 case, we have a
free chain �a self-avoiding random coil in the large-Np limit�.
Figure 2 shows a log-log plot of Rg

x�, Rg
y�, and Rg

z� as a func-
tion of Np. The inset of Fig. 2 shows a semilogarithmic plot
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of the ratio of Rg
z� /Rg

x� and Rg
y� /Rg

x� as a function of Np and
thus gives an effective measure of the molecular asymmetry.
As expected, in the U0=0 case molecules appear anisotropic
as measured in the principal axis system, as evidenced in
Fig. 2. From Fig. 2 it would appear that for U0�0 and Np
�10 the chains are also essentially undeformed relative to
the free chains and most likely the molecules are simply
being rotated into the plane of the ratchet potential. However,
the molecules are anisotropic as the inset of Fig. 2 clearly
illustrates. For the short chains the degree of anisotropy is
about the same as that for the free chains. However, for Np
�10 the molecules have increased anisotropy as a result of a
stronger competition between the ratchet potential and the
chain entropy �both conformational and rotational�. For large

U0, Rg
x� begins to saturate with Np and the asymmetry of the

chain is an increasing function of U0. Larger U0 would fur-
ther constrain the polymers to the y-z plane. Clearly, from

Fig. 2, Rg
x� does not vary as a power law with Np. As we

increase U0 the plateau value of Rg
x� �for large Np� decreases

corresponding to the increasing confinement of the chain.
We have also calculated an effective Flory scaling � as a

function of U0 �for Rg, Re, Rg
y�, and Rg

z��. The values of � are
extracted from a linear regression of the data in Fig. 2. The
calculated values of � �for Np�20� are shown in Fig. 3 as a
function of U0. Also shown are the asymptotic values for �
�U0→� ��=�2D� and U0→0 ��=�3D�� for self-avoiding
chains �20�. We see that for all measures of the chain size, �
plateaus with increasing U0 as the chains are progressively
more confined in the plane of the ratchet potential. For U0
=0 the calculated values of � are slightly higher than �3D.
Our relatively short chains appear somewhat stiff and skew �
toward a slightly higher value.

B. Polymer localization (nonflashing potential)

We examine the localization of the polymer chains by
directly calculating 
c.m.�x� �the distribution of the polymer
center of mass� from our simulations. Figure 4 shows 
c.m.�x�
for Np=5 and 41 as a function of the well depth U0 and �
=0.90. For U0=0, 
c.m.�x� is obviously a flat distribution with
no spatial localization �not shown�. For small U0, the chains
become localized to the minimum in the potential; however,

c.m.�x� is still rather broad. The distribution 
c.m.�x� contains
other information.
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FIG. 2. �Color online� Log-log plot of the three principal radii of

gyration Rg
x�, Rg

y�, and Rg
z� and the end-to-end distance Re as a func-

tion of Np for well depths U0� �0,8� with �=0.8. Inset: Semiloga-

rithmic plot of the ratios Rg
y� /Rg

x� and Rg
z� /Rg

x� as functions of Np,
illustrating the effective asymmetry of the chains as measured in the
principal axis system. The radius of gyration is not shown but is

simply obtained from Rg
2= �Rg

x��2+ �Rg
y��2+ �Rg

z��2. As U0 is increased
the polymer is compressed by the asymmetric sawtooth potential.

For large Np, Rg
x� decreases with increasing U0 and becomes a weak

function of Np.
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FIG. 3. �Color online� Flory exponent � as a function of U0,
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z�. For U0=0 the polymers are free
chains, while as U0 increases the chains are squashed in the y-z
plane. This illustrates the transition from three-dimensional random
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FIG. 4. �Color online� Probability distribution for the position of
the polymer center of mass, 
c.m.�x�, for U0=2,4 ,8 for Np=5 and
41 �corresponding to dashed and solid lines, respectively�. The mol-
ecules Np=5 and 41 have radii of gyration of Rg�0.95 and 4.2,
respectively; both chains are less than half the width of the ratchet
unit cell. Inset: Semilogarithmic plot of Ueff�−ln�
c.m.�x�� as a
function of x and thus the effective potential the polymer would
experience if it were treated as a pointlike particle. As U0 increases
Ueff tends toward the actual shape of the ratchet potential, as
expected.
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Treating the polymer as an equivalent pointlike particle,
with a position corresponding to its center of mass, we can
write 
c.m.�x� as


c.m.�x� � exp�−
Ueff�x�

kBT
� , �10�

where Ueff�x� is the effective potential experienced by the
polymer �this is shown for our particular example in Fig. 4
�inset��. For large U0 the effective potential tends toward the
ratchet potential �i.e., Ueff�x�→UR�x�� as the latter greatly
outweighs any other factors. It is also remarkable to note that
the distributions are not significantly differently for two
chains with quite different lengths Np=5 and 41. In order for
our ensuing analysis to hold we need to make sure that the
effective size of the molecules is smaller than the ratchet
potential; the molecules Np=5 and 41 have radii of gyration
of Rg�0.95 and 4.2, respectively, and both molecules easily
fit in a single ratchet unit cell �i.e., Rg�LR�. The parameter �
controls the asymmetry of the ratchet potential. For �=0.5
the potential and the resulting center of mass distribution are
symmetric. Symmetric flashing potentials are unable to in-
duce net transport �4�. As ��0.5 the distribution 
c.m.�x�
changes from being symmetric to asymmetric.

We examine the effect of the potential asymmetry by
varying �� �0.5,1� ��=1 is ill defined in our context�. The
range �� �0,0.5� simply reverses the direction of the ratchet
if it were flashed off and on. Figure 5 shows 
c.m.�x� for a
polymer with Np=41 �both U0=2 and U0=4� as a function of
�. For �=0.5 both the ratchet potential UR�x� �defined in Eq.
�3�� and 
c.m.�x� are symmetric. As � is increased the peak in

c.m.�x� shifts to the right following the shift in minimum of
the potential.

To summarize, an increase in U0 both increases the rela-
tive deformation of the molecules and leads to a sharper
distribution 
c.m.�x�, although the distribution always has a

finite width. On the other hand � primarily controls the po-
sition of the peak in 
c.m.�x� and the skewness of 
c.m.�x�. It
should be noted that this is an oversimplification, and the
variation of U0 and � has coupled effects; however, the dis-
cussion above provides a good first-order description of their
effects. Variations in U0 also control the spatial localization
of the polymers. It is usually assumed that �for large ton�
chains are fully localized to the potential minima �i.e.,

c.m.�x�=
�x−�LR��, where 
c.m.�x� is the probability distri-
bution of the center of mass of the polymer, or that the width
of the ratchet is much larger than the width of 
c.m.�x� �1,4�.
Of course, as U0→� the distribution 
c.m.�x�→
�x−�LR�.
The assumption of complete localization greatly simplifies
ratchet models; however, it is not necessarily realistic. Essen-
tially, one normally assumes that the polymer behaves as an
equivalent pointlike particle, localized to the minimum in the
potential.

IV. POLYMER DEFORMATION VERSUS DIFFUSION

As illustrated in Sec. III B, if a polymer is treated as a
pointlike particle �with position corresponding to its center
of mass� the assumption of complete localization to the
ratchet minima is not correct. Nonetheless, this assumption is
made in most ratchet models. In other words, the polymer
center of mass is assumed to be a 
 function distributed as

c.m.�x��
�x−x��, where x� is the position of the ratchet
minimum. While this is reasonable for ratchets which are
wide compared to the width of the polymer center of mass
distribution and sufficiently deep �U0�1 �1��, it is not
strictly valid. However, it does greatly simplify analysis. In
the calculations that follow we assume �for simplicity� that
polymers are completely localized. The extension to finite-
width polymer distributions is relatively straightforward.

Working with the ansatz that 
c.m.�x�=
�x−x��, the poly-
mer center of mass distribution will evolve as

P�x,t� =
1

�4�Dt
exp�−

�x − x��2

4Dt
� , �11�

where D is the free diffusion coefficient of the polymer. Nor-
mally, at fixed chain length Np, the diffusion coefficient D is
modeled as invariant to the application of the ratchet poten-
tial. In other words, the chains are assumed to be unde-
formed during the entire ratcheting sequence and the diffu-
sion coefficient is assumed constant.

Even for U0�10 the diffusion coefficient undergoes a
transition from D=D3D to the 2D �pancake� diffusion coef-
ficient D=D2D. It should be noted that D2D refers to the
diffusion coefficient of the polymer parallel to its minor axis
and thus perpendicular to the plane of the ratchet potential.
One could alternatively define two separate diffusion coeffi-
cients D2D

� and D2D
� to denote the diffusion coefficients that

are parallel to the minor and major axes of the polymer,
respectively. For simplicity of notation we use D2D=D2D

�

throughout. The transition from a 3D coil to a 2D pancake is
illustrated by the change in the scaling of the polymer chain
from �3D to �2D with increasing U0 in Sec. III. Consequently,
two deficits exist in most ratchet models: the assumption of

x/LR
0 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
ρ c
m(
x)

Uo=2
Uo=4

FIG. 5. �Color online� Probability distribution for the position of
the polymer center of mass, 
c.m.�x�, as a function of � for well
depths of U0=2,4 and a chain length of Np=41. For a purely sym-
metric potential �=0.5, the resulting 
c.m.�x� is also symmetric. As
� is increased, 
c.m.�x� tends toward a skewed distribution, with a
peak position corresponding closely to the minimum in the ratchet
potential.
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complete localization and the lack of an accurate description
of the polymer diffusion coefficients for moderate to large
U0. We will focus on adding the second-order correction to
existing ratchet models for the latter point.

The diffusion coefficient D3D of a freely diffusing �unde-
formed and hydrodynamically impermeable� polymer is

D3D �
kBT

�RH
� Np

−3/5, �12�

where RH� 2
3Rg

3D is the hydrodynamic radius of the polymer
�21�. The diffusion coefficient of a pancake-shaped �2D�
polymer moving face-on to its minor axis is

D2D �
kBT

�Rg
2D � Np

−3/4, �13�

where Rg
2D is the in-plane radius of gyration of the 2D disk-

like polymer �22�. In fact, maximizing the differences be-
tween D2D

� for different polymers is critical for maximizing
the efficiency of the ratchet. The diffusion of the polymers
during the off phase of the ratchet in part controls the sepa-
ration efficiency of the ratchet �6�

It is easily shown using a scaling argument that, beyond a
few monomers, D2D�D3D. As a result, polymer diffusion
�during the off phase of the ratchet� is initially inhibited by
the pancaking effect until the polymer has relaxed. In prin-
ciple this idea should be valid for chains that are not random
coils due to the inherent anisotropy of polymers. Similar cal-
culations could be applied to stiff polymers as well.

As a result, a pancake-shaped polymer diffusion coeffi-
cient will initially be D2D immediately after the potential is
switched off. The polymer will then diffuse and also its dif-
fusion coefficient will relax back to D3D. This relaxation will
occur in a similar way to that of the end-to-end vector �21�
and we use a simple interpolation scheme to model the tran-
sition from D2D to D3D as

D�t� = D2D exp�−
t

�
� + D3D�1 − exp�−

t

�
�	 , �14�

where � is a characteristic relaxation time scale for the poly-
mer. A natural time scale over which the polymer will relax
is its end-to-end vector relaxation time �R and we assume
that ���R. More robust methods exist for obtaining D�t�;
however, Eq. �14� both has a simple functional form and
allows an analytical result in the following discussion. The
relaxation time �21� is given by the scaling law

�R �
�Rg

3D�2

6D3D
. �15�

The polymer relaxes as it diffuses over a distance on the
order its of own radius, Rg

3D.
An inhibited diffusion coefficient has two consequences

for operational modes of a ratchet. First, polymer diffusion is
slowed for off times toff��R and, second, if the ratchet is
subsequently switched on before the polymer has relaxed it
will be deformed during the on phase of the ratchet, thus
affecting polymer localization.

The classic minimum operational ratchet off time for an
undeformed polymer with diffusion coefficient D3D is

toff
opt =

reff
2

2D3D
, �16�

where reff= �1−��LR is the short side distance in the ratchet,
i.e., the distance the polymer must diffuse to traverse to the
next ratchet cell. Equation �16� thus assumes no polymer
deformation. In the case of a pancake-shaped polymer �i.e., a
polymer with diffusion coefficient D2D�, Eq. �16� underesti-
mates the actual minimum time required for the polymer to
diffuse one well in the ratchet since D2D�D3D.

A. Modified Bader ratchet model

We now provide a derivation of a modified ratchet model
discussed by Bader et al. �1� which includes the effects of
polymer deformation and an associated time dependent dif-
fusion coefficient. We solve the diffusion equation

�P�x,t�
�t

= 2D�t�
�2P�x,t�

�x2 �17�

for polymers that have time-dependent diffusion coefficients
given by D�t�. To solve for P�x , t�, we rewrite Eq. �17� as

�P„x,�2�t�…
��2�t�

=
�2P„x,�2�t�…

�x2 , �18�

where

�2�t� = 2�
0

t

D�t��dt�. �19�

Our expression for D�t� �in Eq. �14�� allows an analytical
calculation of �2�t� and is given by

�2�t� = 2D3Dt − 2�R�D3D − D2D��1 − e−t/�R� . �20�

The probability distribution for the polymer is then

P�x,t� =
1

�2��2�t�
exp�−

x2

2�2�t�� �21�

with �2�t� given by Eq. �20�. In the case that D3D=D2D we
recover the standard result for the one-dimensional diffusion
equation with a non-time-dependent diffusion coefficient,
i.e., �2�t�=2D3Dt �1�. Essentially, �2�t� represents a mean
squared displacement of the polymer center of mass for poly-
mers with time-dependent diffusion coefficients.

An expression for 
, the probability for a polymer to
traverse �diffuse� forward in the ratchet, can now be ob-
tained. To jump forward the polymer must diffuse a distance
reff equal to the shortest dimension of the ratchet. The prob-
ability to do so is then obtained by integrating P�x , t= toff�
from x=reff to x=�,


 = �
reff

�

P�x,toff�dx =
1

2
erfc��1

2

reff
2

�2�toff�
�1/2	 , �22�

where erfc� � is the complementary error function �23�. We
can then rewrite the distance reff

2 as �2�tr�=reff
2 , which defines
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tr as the time required to diffuse the distance reff
2 . The time tr

is obtained by inverting �2�tr�=reff
2 for tr, which gives

tr

�R
= WLambert�− �De−��t+�D�� + �t + �D,

�D = �1 −
D2D

D3D
� and �t =

toff
opt

�R
, �23�

where WLambert�x� is the inverse function of f�x�=xex �23�. To
reiterate, tr is simply the time a polymer takes to diffuse
forward one well. When there is no deformation D2D=D3D
and this time is simply the conventional estimate tr= toff

opt.
We introduce the function WLambert here for simplicity of no-
tation and to provide a closed form definition of tr for the
deformed polymers; actual values of tr can be obtained nu-
merically.

The resulting final probability 
 is given by


 =
1

2
erfc��1

2

�2�tr�
�2�toff�

�1/2	
=

1

2
erfc��1

2

D3Dtr − �R�D3D − D2D��1 − e−tr/�R�
D3Dtoff − �R�D3D − D2D��1 − e−toff/�R��

1/2	 ,

�24�

where tr is given by Eq. �23�. Eq. �24� is simplified by di-
viding the numerator and denominator by D3D�R. It is also
useful to rewrite the time scales toff and tr in terms of the
characteristic relaxation �R as toff=�1�R and tr=�0�R. Doing
this and simplifying the algebra, we obtain


 =
1

2
erfc��1

2

�0 − �D�1 − e−�0�
�1 − �D�1 − e−�1��

1/2	 . �25�

Equation �25� is the probability for a deformed polymer with
initial diffusion coefficient D2D to diffuse one or more
well�s� in the ratchet. Equation �25� has three parameters: �0,
�1, and the ratio of the 2D and 3D diffusion coefficients
�D2D /D3D�. It should be noted that �0 is calculated from Eq.
�23�. In the case where �D=0 the polymer is not deformed
and we recover the original result of Bader et al., given by


Bader =
1

2
erfc��1

2

�0

�1
�1/2	 =

1

2
erfc��1

2

toff
opt

toff
�1/2	 , �26�

the only difference being that the time scales are written in
terms of �R.

Figure 6 shows a plot of the probability 
 for a polymer to
move forward, for three regimes. The solid black line is that
corresponding to D2D=D3D, i.e., an undeformed polymer
�corresponding to the original Bader expression�. The other
two curves on Fig. 6 correspond to D2D�D3D for a
pancaked-shaped polymer and D2D�D3D for the case where
the pancaked-polymer diffusion coefficient is greater than
the free diffusion coefficient. The latter case is one in which
deformation enhances diffusion in the pancake-shaped state
and is not of interest in our work. This figure demonstrates
several key features of our model. First, the transition prob-
ability 
 for a pancake-shaped polymer �D3D�D2D� is de-
creased for short off times �i.e., small �1�. The latter suggests
that deformation can be used to modulate the behavior of
polymers in ratchets. Moreover, since large chains relax
more slowly than shorter chains this effect of deformation
would enhance the separation capability of a ratchet by slow-
ing the movement of larger polymers more than that of
smaller polymers. This is one of the key results of our work.
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FIG. 6. �Color online� Probability 
 for a polymer to diffuse
forward in the ratchet as a function of the ratchet off time �toff

=�1�R�. The solid black line corresponds to the Bader result for an
undeformed polymer D�t�=D3D. The region above the black line
corresponds to D2D�D3D, while the region below the black line
corresponds D3D�D2D and is the pancaked-polymer diffusion do-
main. Polymers in the pancaked diffusion regime are slowed and
the associated value of 
 is decreased.
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FIG. 7. �Color online� Typical trajectory of two different poly-
mers with Np=13 and 29, for toff= ton=500. The trajectories illus-
trate that the polymers are indeed undergoing a net motion which
changes as a function of Np. The ratchet has a depth of U0=4, a
width of LR=11.61�, and an asymmetry factor of �=0.80.
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B. MD simulations and inhibited diffusion

We now turn to the results from our MD simulations.
Figure 7 shows two typical trajectories of the polymer center
of mass, for Np=13 and 29, with LR=11.61�, U0=4, and an
asymmetry parameter of �=0.80, from our MD simulations
�we do not carry out a systematic study of the transport prop-
erties here�. As seen in Fig. 7, the ratchet is able to induce net
motion in two polymers with different lengths �Np=13 and
29�. The trajectories indicate that the molecules are moving
with different speeds and the ratchet could be used to sepa-
rate them. We provide only a single set of trajectories here
although it is possible to extend our calculations to examine
transport in these systems �it is, however, very computation-
ally time consuming�.

To explore the functional form of Eq. �20� we have car-
ried out a suite of MD simulations which examine a single
polymer �Np=29� in the presence of a deep ratcheting poten-
tial with U0=10, ensuring a high degree of deformation dur-
ing the on phase of the ratchet. The on and off times of the
ratchet are toff=500 and ton=500, given in MD time units.
Evidently, ton is much larger than the time scale required for
the chain to be driven to the ratchet minima. From the MD
simulations Rg�3.6 and the relaxation time calculated from
Eq. �15� is �R�180. The on and off times are then much
larger than the relaxation time �R. The value of toff is also
chosen so that the polymer will have relaxed during the off
phase. By flashing the ratchet off and on many times we
generate trajectories of the position of the polymer center of
mass as a function of time after the ratchet has been switched
off. We map all particle trajectories onto the unit cell and
calculate ��2�t�
 from the MD simulations for the polymer of
center of mass as a function of time. Figure 8 shows the
mean squared displacement for the polymer center of mass
obtained from multiple cycles of the ratchet. The ratchet
width is LR=11.61��Rg�3.6.

Figure 8 also shows �square symbols� the mean squared
displacement of a single polymer �Np=29� which is freely
diffusing, i.e., normal diffusion in the absence of a ratchet
potential. The data labeled ratchet �with circles� are those for
a polymer released from a ratchet, which was on for a suffi-
ciently long time to localize the polymer to the ratchet. The
data are averaged over many cycles of the ratchet.

By carrying out a linear regression �using �2�t�=2D3D
MDt�

of the free chain data we obtained a free diffusion coefficient
of D3D

MD�0.008 15. In the case of the ratchet we fit the data
with the expression �2�t�=2D3D

MDt−� obtained from the
large-t��R limit of Eq. �20�. The constant �=2�R�D3D

MD

−D2D
MD� and is simply the prefactor of the second term in Eq.

�20�. The calculated value is �=1.437. Using the values of
D3D

MD and �, we fit the ratchet data over the entire range of t
using �2�t�=2D3D

MDt−��1−exp�−t /�R�� �where �R was the
only fitting parameter�. The value of the relaxation time thus
obtained is �R

MD�140. Using the values of �, �R, and D3D
MD

we calculated a value of the pancaked-polymer diffusion co-
efficient of D2D

MD=0.003 05 or 35% of D3D
MD. The calculated

relaxation time from Eq. �15�, �R�180, agrees well with
�R

MD�140. The fitted line for the ratchet data is shown in
Fig. 8 and describes well the data from the MD simulations
over the whole range of t.

The MD simulation data illustrate and corroborate three
important things. The first is that polymer diffusion is ini-
tially inhibited by the pancaking effect after release from the
ratchet. The second point is that after some time �toff��R�
the polymer resumes its normal diffusion. As the polymer
relaxes over several multiples of its relaxation time, its dif-
fusion coefficient returns to the 3D free diffusion value. Fi-
nally, there is an inherent lag time for the pancake-shaped
polymers relative to free chains to diffuse the same mean
squared distance �2�t�. For t��R, we can write �2�t�
�2D3Dt−2�R�D3D−D2D� and thus the time taken to diffuse
�2�t� is

t* �
�2�t� + 2�R�D3D − D2D�

2D3D

�
�2�t�
2D3D

+ �R�D. �27�

Equation �27� is then simply the time taken for a free chain
to diffuse �2�t� /2D3D plus a finite correction term given by
�R�D, with �D given in Eq. �23�. If we one use D2D=D3D we
recover the Bader et al. ratchet model �1�, without correc-
tions for deformation. In other words, by controlling �D, i.e.,
the ratio of the pancaked-state diffusion coefficient relative
to the free diffusion coefficient, it is possible to control this
lag time and modulate the diffusion of polymers in a ratchet.
The inhibited diffusion model and the diffusion occurring in
the MD simulations agree well and the ratchet is slowed by
the pancaking effect. This represents an operational tech-
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FIG. 8. �Color online� Averaged mean squared displacement
��2�t�
 in the x direction versus time t for a free polymer and a
polymer released from a ratchet from the MD simulations, with
Np=29, �=0.80, and with a well depth of U0=10. The free polymer
�squares� undergoes normal diffusion �with D3D�0.008 15, ob-
tained from a linear fit of the data�. We can estimate the value of the
relaxation time with a calculated value of Rg

3D�3.6 from the simu-
lations: this yields an approximate value of �R

MD�140 calculated
using Eq. �15�. The polymer that is released from the ratchet is
initially slowed and after a sufficient t��R returns to normal diffu-
sive motion. This illustrates the effect of polymer pancaking on the
reduction of the effective diffusion coefficient of a polymer released
from a ratchet potential.
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nique and method to modulate polymer dynamics in a flash-
ing ratchet.

V. CONCLUSIONS

We have presented an investigation of the effects of an
applied asymmetric sawtooth potential on the properties of
polymer chains. This potential both deforms �and com-
presses� the polymer chains and alters the Flory scaling of
the polymers from free 3D polymers ��3d� to pancake-shaped
2D polymers ��2d�. This compression modifies the polymer
diffusion coefficient from the 3D free polymer diffusion co-
efficient, D3D, to that of a 2D pancake-shaped polymer, D2D.
The initial diffusion of the polymer is then inhibited, result-
ing from the reduction in diffusion coefficient. We also illus-
trated that the width of the distribution describing the posi-
tion of the center of mass of the polymer can be rather broad
although we have not taken this into account in our modified
ratchet theory.

We have presented a simple expression for the time-
dependent diffusion coefficient D�t� written in terms of the
2D diffusion coefficient D2D, the 3D, diffusion coefficient
D3D, and the rotational relaxation time of the polymer �R.
This expression quantitatively accounts for the observed in-
hibited diffusion of polymers released from ratchets and pro-
vides a second-order correction to existing polymer ratchet
models. With our initial ansatz of a time-dependent diffusion
coefficient we derived a modified Bader et al. ratchet model
�1� which explicitly accounts for polymer deformation. We
also provided a derivation of an exact expression for the
polymer transition probability 
 with a simple functional
form. This transition probability directly takes into account
the effect of deformation induced by the ratchet and in the
limit of D3D=D2D collapses to the original Bader et al.
model.

Our modified ratchet model yields a transition probability
which for short times �toff��R� is less than that predicted by
the Bader et al. model �for polymers starting from the pan-
caked state D2D�D3D�. Although the Bader et al. model
does give the correct first-order approximation to the prob-

lem it neglects second-order contributions from chain defor-
mation. This is a direct result of the inhibited diffusion in-
duced by the pancaking effect of the ratchet potential. It is
worth noting that one may be able to generalize the Zimm
model to arrive at an explicit expression for the time-
dependent diffusion coefficient of a polymer chain confined
to a ratchet potential although this is not something we pur-
sue in this paper.

We demonstrated, using MD simulations, that the inhib-
ited diffusion effect is directly observable in a ratchet. More-
over, this effect is presumed not to be present in Brownian
dynamics simulations as a result of a non-conformation-
dependent diffusion coefficient. We have shown that, by di-
rectly examining the diffusion of a polymer immediately af-
ter it is released from a ratchet potential and comparing it to
a freely diffusing polymer, one can clearly see the effect of
pancaking on diffusion. The result is that the pancaking ef-
fect slows the initial diffusion of the polymer chains and thus
corroborates the proposed modified Bader et al. ratchet
model. The data from the MD simulations illustrate the pan-
caking effect quite succinctly. Our model predicts that opera-
tional times for ratchets when defined in terms of the relax-
ation time of the polymer can be used to modulate polymer
migration in a ratchet. The effect of pancaking can be used in
an advantageous manner in experimental systems to control
and optimize migration in ratchets. Since large chains will
relax more slowly than smaller chains, this inhibited diffu-
sion should enhance separation in ratchets.
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